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Abstract-Interpolative reasoning methods do not only help re- 
duce the complexity of fuzzy models hut also make inference in 
sparse-rule based systems possible. This paper presents an in- 
terpolative reasoning method by exploiting the center of gravity 
(COG) property of the fuzzy sets concerned. The method works by 
first constructing a new inference rule via manipulating two given 
adjacent rules, and then by using similarity information to con- 
vert the intermediate inference results into the final derived con- 
clusion. Two transformation operations are introduced to support 
such reasoning, which allow the COG of a fuzzy set to remain unal- 
tered before and after the transformation, Results of esxperimen- 
tal comparisons are provided to reflect the success of this work. 

1. INTRODUCTION ’ 

UZZY rule interpolation helps reduce the complexity of F fuzzy models and supports inference in systems that em- 
ploy sparse rule sets [I]. With interpolation, fuzzy rules which 
may be approximated from their neighbouring rules can be 
omitted from the rule base. This leads to the complexity re- 
duction of fuzzy models. When given observations have no 
overlap with the antecedent values of rules, classical fuzzy in- 
ference methods have no rule to fire, but interpolative reasoning 
methods can still obtain certain conclusions. Despite these sig- 
nificant advantages, earlier work in fuzzy interpolative reason- 
ing does not guarantee the convexity of the derived fuzzy sets 
[3][4], which is often a crucial requirement of fuzzy reasoning 
to attain more easily interpretable practical results. 

In order to eliminate the nonconvexity drawback, there has 
been considerable work reported in the literature. For instance, 
Vas, Kalmar and K6czy have proposed an algorithm [6] that re- 
duces the problem of nonconvex conclusions. Qiao, Mizumoto 
and Yan [7] have published an improved method which uses 
similarity transfer reasoning to guarantee the convex results. 
Hsiao, Chen and Lee [5] have introduced a new interpolative 
method which exploits the slopes of the fuzzy sets to obtain 
convex conclusions. General fuzzy interpolation and extrapola- 
tion techniques [SI and a modified a-cut based method [9] have 
also been proposed. In addition, Bouchon, Marsala and Rifqi 
have created an interpolative method based on graduality [IO]. 

Nevertheless, the existing methods do not seem to make use 
of the center of gravity (COG) property of fuzzy sets, which is 
an essential feature that concurrently reflects the location and 
shape of the fuzzy sets concerned. This paper treats the COG 
as the core of any fuzzy membership function;and proposes 
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two transformation operations which support the application of 
fuzzy interpolative reasoning, so that the reasoning results are 
guaranteed to be convex and normal. 

The rest of the paper is organized as follows. Section I1 
describes the relevant background of fuzzy interpolative tech- 
niques. Section 111 proposes the new interpolative reasoning 
method based on exploiting the COG property. Section IV gives 
examples to illustrate the use of this method. Finally, Section V 
concludes the paper and points out important further work. 

11. BACKGROUND OF FUZZY RULE 
INTERPOLATIVE TECHNIQUES 

Fuzzy rule interpolation [1][2], proposed first by K6czy and 
Hirota, is an inference technique for fuzzy rule bases where the 
antecedents do not cover the whole input universe. Such tech- 
niques are essential for sparse rule-based fuzzy systems. The 
initial rule interpolation method, which is hereafter referred to 
as the KH algorithm for presentational simplicity, requires the 
following conditions to be satisfied: The involved fuzzy sets 
have to be of continuous, convex and normal membership func- 
tions, with bounded support. 

An important notion in [ I ]  is the “less than” relation between 
two fuzzy sets. Fuzzy set A1 is said to be less than Ax, denoted 
by A1 < Az, ifLVa E [0, l], the following conditions hold: 

inflA1,) < inf{Aze.), supIA1,) < sup{&}, (1) 

where AI, and Ax, are respectively the a-cut of AI and that 
of Az, inf{Ai,} is the infimum of Ai,, and sup{A;,) is the 
supremum of Ai,, i = 1,2.  

For simplicity, suppose that two fuzzy rules are given: 

I f  X is AI then Y is B1, 
I f X i s A z t h e n Y i s B z ,  

which are briefly denoted as A1 + B, and Ax Bx, respec- 
tively. Also, suppose that these two rules are adjacent, i.e., there 
is no any such rule existing that the antecedent value A of that 
rule is between the region of AI  and Ax. To entail the inter- 
polation in the region between the antecedent values of these 
two rules, i.e., IO determine a new conclusion B’ when an ob- 
servation A’ located between fuzzy sets A1 and Ax is given, 
it is commonly assumed, for convenience, that rules in a given 
rule base are arranged with respect to a partial ordering among 

0-7803-7810-5/03/517.00 02003 IEEE 25 The IEEE International Conference on F u u y  Systems 

mailto:Z.huang-2@sms.ed.ac.uk
mailto:qiangs@dai.ed.ac.uk


the convex and normal fuzzy sets (CNF sets) of the antecedents 
variables. For the above two rules, this means that 

AI < A' < Az. 12) 

The simplest interpolation which is linear can thus be written 
as: 

d(A*,Ai)  - d(B*,Bi) 
d(A*,A2) - d(B*,B2)'  

where d(., .) is typically the Euclidean distance between two 
fuzzy sets (though other distance metrics may be used as alter- 
natives for this). This is illustrated in Fig. 1, where the lower 
and upper distances between @-cuts A,, and Azo are defined 
as follows: 

(3) 

Alternatively, let 

the same solution can then be obtained as follows: 

min{B:} = (1 - XL)inf{B1,} + XLinf{Bz=}, 

m={X} = (1 - k)sup{&,) + ksuP{&,}.(10) 

From this, B; = (min{B:},max{B;}) results. From B;, the 
conclusion fuzzy set B' can be conshucted by the representa- 
tion principle of fuzzy sets: 

B*= U (YE:. (1 1) 
=€lo.ll 

1. 1 1. 

Fig. 1. Fuzzy interpolative reasoning with a noneonvex conclusion on a sparse 
fuuy rule base 

However, this linear interpolation cannot guarantee the con- 
vexity of the derived fuzzy sets (although they may he normal, 
as shown in Fig. I), even when the fuzzy sets concemed in the 
given rules and the observations are all normal and convex. 

111. THE PROPOSED METHOD 

Center of gravity is an important property since it reflects 
both the location and the shape of a fuzzy set definition. Yet, it 
seems that none of the existing interpolative reasoning methods 
exploits this property. The present method takes the COG prop- 
erty into consideration to guide fuzzy interpolative reasoning in 
sparse rule bases. ' ' 

For computational simplicity, it is herein presumed that all 
fuzzy sets used are triangular. Given a fuzzy set A as depicted 
in Fig. 2, with the three distinct coordinates of the triangular 
fuzzy set being (ao,O). ( a l , l )  and (az,O), the mathematical 
formula to calculate the COG of A are listed below: 

a0 + a1 + a2 
3 '  

COG(A), = 

0+1+0 1 
3 '  

- -  - COG(A), = 

Since COG(A), is a constant, only the x-coordinate value is 
needed to be considered. The notation COG(A) is therefore 
used to denote COG(A),, and the fuzzy set A is itself charac- 
terised by the triple (ao, al, az)  in the rest of this paper. 

A.  The Base Case 
Suppose that two adjacent fuzzy rules A1 * B I ,  A2 * BZ 

and the observation A*, which is located between fuzzy sets 
AI and Az, are given. The general case of interpolative fuzzy 
reasoning concerning two variables X and Y can he described 
through the modus ponens interpretation below, and as illus- 
trated in Fig. 3. 

observation: X is A' 
rules: if X is AI, then Y is E1 

if X is A2, then Y is Bz 
cotxlusion: Y is E'? 

(14) 

Here, Ai  = (aio,aii,aiz), Bi = ( b i o , b i i , b ; z ) ,  i = 1,2, and 
A*=(ao,ai,az),B*=(bo,bi,bz).  

The proposed method begins with constructing a new fuzzy 
set A' which is close (or with a short distance) to ond has the 

Fig. 2. lllustmtion of COG(A). and COG(A), 
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same COG as A'. To facilitate this, the distances defined in 
(4) and (5) are no longer employed. Instead, the distance be- 
tween A1 and A2 is measured by that between COG(A1) and 
COG(A2): 

d(Ai,Az) = d(COG(Ai),COG(A2)). (15) 

From this and by analogy to (8), in order to construct A', the 
following is computed 

Then, U;, U ;  and U: of A' are calculated as follows: 

ab = ( 1  - XC0G)alO + XCOGaZO, 

U ;  = ( 1  - X C 0 G ) a l l  + XCOGa21, 

a; = (1 - XC0G)alZ + XCOGaZZ, 

(17) 
(18) 
(19) 

which are collectively abbreviated to 

A' = ( 1  - XCOG)A~ + XCOGAZ. (20) 

Now, A' has the same COG as A', this is because 

ab + a: + a; 
3 

COG(A') = 

With (1 7)-( 19) and ( 16), 

COG(A') 

= (1 - XCOG)COG(A~) + XcoGCOG(Az) 
= COG(A*) 

= (1  - XCOG)"+"~'f"U + ~ ~ O G D Z n + o ~ ~ + 4 2 Z  

From this, based on the essential idea of interpolation, a con- 
sequent fuzzy set B' can be obtained such that 

" I  I ,  

Fig. 3 .  Interpolation with triangular membership functions 
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with abbreviated notation: 

B' = (1 - XCOG)B~ + XCOGBZ. (24) 

In so doing, the newly derived rule A' E' involves the use 
of only convex and normal fuzzy sets. 

As A' + B' is derived from A1 + B1 and A2 + Bz, it is 
feasible to perform fuzzy reasoning with this new rule without 
further reference to its originals. The interpolative reasoning 
problem is therefore changed from (14) to the new modus po- 
nens interpretation: 

observation: X is A' 

conclusion: Y is B'? 
rule: if X is A', then Y is B' (25) 

This interpretation retains the same results as (14) in dealing 
with the extreme cases: If A* = A I ,  then from ( I  6) XCOG = 0, 
and according to (20) and (24), A' = A1 and B' = B1, so the 
conclusion B' = B1. Similarly, if A' = Az, then B' = Bz. 

Other than the extreme cases, similarity measures are used 
to support the application of this new modus ponens as done in 
[7]. In particular, (25) can be interpreted as 

The more similar X to A', the more similar Y to B'. 

Suppose that a certain degree of similarity between A' and A' 
is established, it is reasonable to require that the consequent 
partsB' and B' attain this similarity degree. The question is 
now how to obtain an operator which will allow transforming 
B' to B' with the desired degree of similarity. To this end, 
the following two component transformation operators are first 
introduced: 

Given a scale rate s, in order to 
transform the current fuzzy support (a2 -uo) into a new support 
(s * (a2 - ao)) while keeping the COG and the ratio of let?- 
support (a: - ab) to right-support (U; - U ; )  of the transformed 
fuzzy set the same as those of its original, that is, COG(A') = 
COG(A) and = z, the new do, dl and afz must 
satisfy (as illustrated in Fig. 4. A): 

(26) 

Scale Transformation 

(27) 
an(]  + 2 4  + al(1 - S) + a z ( l  - S) 

3 
a o ( l - s ) + a l ( l + 2 s ) + a z ( l - s )  

3 
ao(l - S) + ai ( 1  - S) + az(l + 2s) 

3 

ab = 

a; = (28) 

(29) a; = 

Fig. 4. Scale Transformalion and Move Transformation 
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This is obvious. In fact, to satisfy the conditions imposed over 
the transformation, the linear equations below must hold simul- 
taneously, 

ab +,a; + a; = ad + a1 + a2 
( 1 - 0  -- 

- 02-01 i a; -ab ,= s(a2 - ao) 

Solving these equations leads to the solutions as given in (27)- 
(29). Note that this scale transformation guarantees that the 
transformed fuzzy sets are convex thanks to the requirement of 

a'z-rl', - a>--L1, 
Move Transformation . Given a move distance 1. in order to 

transform the cument fuzzy support (a2 - ao) from the starting 
location a0 to a new starting position a. + 1 while keeping the 
COG and the length of support (a2 - ao) remaining the same, 
i.e., COG(A') = COG(A) and a; - ab = a2 - ao, the new 
ab, a; and a; must be (as shown in Fig. 4. B): 

where 0 5 I 5 lmOz = (a1 - ao)/3.  If 1 > l,,,, the transfor- 
mation generates the nonconvex fuzzy sets. For instance, con- 
sider the extreme case where A is transformed to A", as shown 
in Fig. 4. B. When 1 = I,,,, the left slope of A" becomes ver- 
tical. Any further increase in 1 will lead to the resulting trans- 
formed fuzzy set being a non CNF set. To avoid this, the move 
rate m is introduced 

(33) 

If move rate m E [0, I], then 1 5 l,,, holds. This ensures the 
transformed fuzzy set A' to be convex and normal if A is itself 
a CNF set. Note that the move transformation has two possible 
moving directions, the above discusses the left-direction case 
(from the viewpoint of a l )  with I > 0, the right direction with 
1 < 0 should hold by symmetry: 

(34) 

On top of the scale and move transformations, an integrated 
transformation, denoted as T ( A ,  A'), between two fuzzy sets 
A and A' can be introduced such that A' is the derived CNF set 
of A by applying both transformation components. Obviously, 
two integrated transformations are said to be identical if and 
only if both of their scale rate and move rate are equal. 

As indicated earlier, it is intuitive to maintain the similarity 
degree between the consequent parts B' and B' to be the same 
as that between the antecedent parts A' and A', in performing 
interpolative reasoning. Now that the integrated transformation 
allows the similarity degree between two fuzzy sets to be mea- 
sured by the scale rate and move rate, the desired conclusion 

B' can be obtained by satisfying the following (as shown in 
Fig. 5 ) :  

That is, the parameters ofscale rate and move rate calculated 
from A' to A' are used to compute B' from B' in a reverse en- 
gineering sense: Once B' is obtained, it is transformed with the 
same scale and move rates as what has been used to transform 
A* to A', the result of this transformation is B'. Clearly, B' 
will then retain the same similarity degree as that between the 
antecedent parts A' and A'. 

There are two specific cases worth noting. The first is that 
if A' is a singleton while A' is a CNF set, the scale transfor- 
mation from A' to A' is 0. This case can be easily handled by 
setting the result B' to a singleton whose COG interpolates be- 
tween COG(BI)  and COG(B2) in the same way as A' does 
between COG(AI)  and COG(A2).  The second case (which 
only exists ifboth antecedents A1 and A2 are singletons) is that 
if A' is a CNF set while A' is a singleton, the scale transforma- 
tion from A' to A' is M. Since M cannot be used to generate 
the resulting fuzzy set, a modified strategy is created for this. 
Let the COG level widrh of a fuzzy set A be the length between 
the two slopes at the a-cut level (which is 1 /3  for this case). 
The ratio between the COG level width of fuzzy set A* and the 
distance of COG(A1) and COG(A2) is calculated, and then 
used to compute the COG level width of fuzzy set B' by equal- 
izing the corresponding ratio. Note that the fuzzy set obtained 
by the scale transformation from a singleton is an isosceles tri- 
angle. These two cases will be illustrated with examples later. 

T(B' ,  B*) = T(A',A') .  (35) 

B. The General Case 

The base case described in Section 1II.A concems with in- 
terpolation between two adjacent rules with each involving one 
antecedent variable. However, the present approach is readily 
extendable to rules with multiple antecedent attributes. 

Without losing generality, suppose that two adjacent rules Ri 
and Rj are represented by 

if XI is Ali a n d . .  . and X ,  i s  A,,,, then Y is Bi, 
if X1 i s  Alj a n d . .  .and X,,, is A,j then Y is Bj 

Thus, when a vector of observations (A:,  . . . , A;, . . . , A h )  is 
given, by direct analogy to the base case, the values Aki and 

" I  ". ". 

Fig. 5. Proposed interpolative method 
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Akj of Xk, k = 1 , 2 , .  . . , m, are used to obtain the new CNF 
set A;: 

A; = (1 - Xk)Ak; + X k A k j ,  (36) Attnbute Values 
A i =  0,5,G 
Az = 11,1214)  
Bi = 0,2,4) 
Bz = 10,11,13) 

where 
Results 

KH . , .  , .  
HCL (6.36,6.58,7.38) 
HS (5.83,6.26,7.31) 

Method B' 

Clearly, the COG of A; will remain the same as that of the k-th 
observation A;. 

The resulting A; and the given A; are used to compute the 
scale rate SI: and move rate mk just like the one variable case. 
From this, the combined scale rate s, and move rate m, over 
the m conditional attributes are calculated as the arithmetic av- 
erages of sk  and mk, k = 1,2, .  . . , m: 

between the two adjacent rules A1 + B1 and A2 Bz. In 
reporting these results, HCL stands for the work of [5] and HS 
stands for the work proposed in this paper. 

Example 1. Now suppose A' = (7 ,8,9) .  Table I summarises 

Attnbute Values 
' A i  = 3 , 3 , 3  

Az = 12,12', 12) 
B1 = 4,4,4) 
Bz = 10,11,13) 

m 

Results 
Method B' 

KH 
HCL (5.33,6:55,9.00) 
HS (5.71,6.28, 8.16) 

, , .  , .  

1 

k=l 

l m  
m , = - C m k .  

k=1 

Note that, other than using arithmetic average, different 
mechanisms such as the medium value operator may be em- 
ployed for this pulpose. However, the average helps to'cap- 
ture the intuition that when no particular information regarding 
which variable has a more dominating influence upon the con- 
clusion, all the variables are treated equally. If such infomation 
is available, a weighted average operator may be better to use. 

Regarding the consequent, by analogy to (24), -B' can be 
computed by 

B' = (1 - X,)B; + X,Bj. (39)  

Here, A, is deemed to be the average of X E ,  k = 1 , 2 , .  . . , m, to 
mirror the approach taken above 

As the combined scale rate sc and move rate m, reflect the 
similarity degree between the observation vector and the values 
of the given N1es;the hzzy  set B*' of the conclusion can then 
be estimated by transforming B' via the application of the same 
s, and m,. 

IV. ILLUSTRATIVE EXAMPLES 

TABLE I 
R E S U L T S F O R E X A M P L E ~ , W ~ T H A ~  =(7,8,9) 

" I 2 1 a 5 e 7 x 9 I "  I ,  1213 .a  
HS mc.had 

Fig. 6.  The Reasoning Results of Example 1 

KH method resulted in a nonconvex conclusion while the other 
two concluded with normal and convex fuzzy sets. 

Example 2. The second case considers when the scale rate 
is M. The given observation is a fuzzy set (5,G, 8). Table I1 
and Fig. 7 present the antecedents and interpreted hzzy  sets. 
The interpolation (5.71,6.28,8.16) is obtained as follows: First 
the ratio between COG level widfk of A* and the distance of 
COG(A1) and COG(AZ) was calculated, then the COG level 
width ofB' was computed by retaining the same ratio but based 
on the distance of COG(&) and COG(Bz), and finally, the 
move transformation was applied as usual. The comparative re- 
sults show that the KH and HCL methods performed similarly 
(the supports of the resultant fuzzy sets are identical since they 
are computed in the same way) while the HS method also gen- 
erated a quite reasonable outcome. 

Example 3. The third case considers a similar situation to 
example 1 but the observation is a singleton A' = (8,8,8). 

In this section, the example problems given in [3][5] together 
with a new problem case are used to illustrate the newly pro- 
posed interpolative method and to facilitate comparative stud- 
ies. All the results discussed below concern the interpolation 

TABLE I1 
RESULTS FOR EXAMPLE 2,  WITH A' = ( 5 , 6 , 8 )  
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"U- 

Attribute Values 
Ai = 0 ,5 ,6  
Az = 11,13! 14) 
Bi = 0 , 2 , 4 )  
Bz = 10,11,13) 

Fig. 7. The Reasoning ResultS of Example 2 

TABLE 111 
RESULTSFOR E X A M P L E ) ,  W I T H  A' = (8,8,8) 

Results 

KH . 1 .  9 ,  

HCL [7.27,6.25] 
HS (6.49,6.49,6.49) 

Method B' 

Table 111 and Fig. 8 present the results. In this case, the KH 
method once again generated a nonconvex fuzzy set and the 
HCL method produced a non-triangular fuzzy set. However, the 
method proposed in this paper resulted in a singleton conclu- 
sion, which is rather intuitive given the singleton-valued condi- 
tion. 

V. CONCLUSIONS 

This paper has proposed a novel method for interpolative rea- 
soning, based on the exploitation of the centre of gravity (COG) 
property of the fuzzy sets employed in fuzzy modelling. The 
method works by first constructing a new inference rule via 
manipulating two adjacent rules (and the given observations of 
course), and then by using similarity information to convert the 
intermediate inference results into the final derived conclusion. 
To support this, two transformation operations have been intro- 
duced, which allow the COG of a fuzzy set to remain unaltered 
before and after the transformation. This approach not only in- 
herits the common advantages of fuzzy interpolative reasoning: 
allowing inferences to be performed with simple and sparse rule 
bases, but also guarantees that the resultant fuzzy values of an 
inference remain to be normal and convex. This helps maintain 
the desirable practical property of fuzzy systems in that their 
modelling and inference are easily interpretable. 

Fig. 8. The Reasoning Results of Example 3 

Much can be improved, however. In particular, the present 
work only uses triangular fuzzy sets in fuzzy rules. Other types 
of fuzzy set representation (e.g., trapezoidal and bell-shaped) 
are also often utilised in fuzzy modelling. An extension of the 
proposed method to cope with such more complex representa- 
tions is worth investigating. In addition, this work does not look 
into the possible effect of arranging the rule base in a certain 
partial order for Nles of complex condition pattems. Further 
effort to estimate the overheads this may cause over the infer- 
ence procedures seems necessary. 
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