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Fuzzy Interpolation and Extrapolation:
A Practical Approach

Zhiheng Huang and Qiang Shen

Abstract—Fuzzy interpolation does not only help to reduce the
complexity of fuzzy models, but also makes inference in sparse
rule-based systems possible. It has been successfully applied to sys-
tems control, but limited work exists for its applications to tasks
like prediction and classification. Almost all fuzzy interpolation
techniques in the literature make strong assumptions that there
are two closest adjacent rules available to the observation, and that
such rules must flank the observation for each attribute. Also, some
interpolation approaches cannot handle fuzzy sets whose member-
ship functions involve vertical slopes. To avoid such limitations and
develop a more practical approach, this paper extends the work
of Huang and Shen. The result enables both interpolation and ex-
trapolation which involve multiple fuzzy rules, with each rule con-
sisting of multiple antecedents. Two realistic applications, namely
truck backer-upper control and computer activity prediction, are
provided in this paper to demonstrate the utility of the extended
approach. Experiment-based comparisons to the most commonly
used Mamdani fuzzy reasoning mechanism, and to other existing
fuzzy interpolation techniques are given to show the significance
and potential of this research.

Index Terms—Fuzzy model simplification, fuzzy rule extrapo-
lation, fuzzy rule interpolation, scale and move transformations,
sparse rule base, transformation-based interpolation.

I. INTRODUCTION

FUZZY rule interpolation helps reduce the complexity of
fuzzy models and supports inference in systems that em-

ploy sparse rule sets [2], [3]. As argued in [1], with interpola-
tion, fuzzy rules which may be approximated from their neigh-
boring rules can be omitted from the rule base. This leads to
the complexity reduction of fuzzy models. When given obser-
vations have no overlap with the antecedent values of the rules,
classical fuzzy inference methods have no rule to fire, but inter-
polation methods can still obtain certain conclusions. Despite
these significant advantages, earlier work in fuzzy interpolative
reasoning does not guarantee the convexity of the derived fuzzy
sets [4], [5], which is often a crucial requirement of fuzzy rea-
soning to attain more easily interpretable practical results.

Initially, the motivation of research on fuzzy interpolation
is to eliminate the nonconvexity drawback. It soon goes be-
yond that to make fuzzy interpolation a more practical and gen-
eral inference for both sparse and nonsparse rule bases. There
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has been considerable research reported in the literature in the
last decade. For instance, Vas et al. have proposed an algo-
rithm [6] that reduces the problem of nonconvex conclusions.
Qiao et al. [7] have published an improved method which uses
similarity-based reasoning to ensure the attainment of convex
results. Hsiao et al. [8] have introduced a new interpolative
method which exploits the slopes of the fuzzy sets. Baranyiet al.
[9], [10] have proposed the work on general fuzzy interpolation
and extrapolation techniques. Tikk et al. [11]–[13] have pre-
sented a modified -cut-based method. Dubois et al. [14] have
proposed a fuzzy interpolation technique using fuzzy relation in
the Cartesian product of input and output space. Bouchonet al.
[15] have created an interpolative method by exploiting the con-
cept of graduality. Yam and Kóczy [16], [17] have proposed a
fuzzy interpolative technique based on Cartesian representation,
and Jenei et al. [18], [19] have introduced an axiomatic approach
for fuzzy interpolation and extrapolation.

Nevertheless, some of the existing methods (e.g., [17]) in-
volve complex computation. It becomes more difficult when
they are extended to interpolation with multiple antecedents.
Others (e.g., [8]) may only apply to simple fuzzy membership
functions limited to triangular or trapezoidal. Apart from the
work that uses different combinations of interpolation and in-
ference schemes (e.g., [10]) and the approaches of [16] and [17]
(that are able to generate multiple results but do not show how
to make a choice amongst them), many existing techniques lack
the flexibility to generate fuzzy results that meet different ap-
plication requirements. In addition, practically, fuzzy sets used
in a rule base may have vertical slopes. In fact, handling fuzzy
sets with vertical slopes is crucial in prediction or classification
problems as shown in Section V. However, some existing fuzzy
interpolation methods cannot handle such cases.

The work of [1] proposes a novel interpolation method which
avoids the problems mentioned above. It only considers inter-
polation between two adjacent rules. This paper further extends
this method to deal with extrapolation as well as interpolation
and which can both involve multiple rules, with each rule con-
sisting of multiple antecedents. Although fuzzy interpolation
techniques have been successfully applied to control problems
[20]–[23], little has been reported for their use in performing
tasks like prediction and classification. This extension helps
bridge the gap between theory and prediction or classification
applications, which may often require reasoning with multiple
multiantecedent rules and extrapolation.

Incidentally, it is worth mentioning that a set of axioms have
been proposed by Jenei [18], from a logical point of view, for
fuzzy interpolation which include properties such as validity
and compatibility amongst others. To uphold these properties,
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Fig. 1. Scale and move transformations.

a number of conditions are set. However, a particular constraint
imposed is not realistic in practice, which requires that all inter-
mediate fuzzy sets have a wider nuclear (interval of elements
which have a full membership value) in the consequent part
than those in the antecedent part. Violation of this constraint
will cause the resultant fuzzy sets to lose normality (with the
maximal fuzzy membership values of the result being less than
1). In addition, Jenei’s method cannot handle the case where
the membership functions of the intermediate fuzzy sets have
vertical slopes. The interpolation method proposed here avoid
these, and, hence, it does not necessarily require or satisfy prop-
erties such as the monotonicity as imposed in [18].

The rest of the paper is organized as follows. For complete-
ness, Section II introduces the concept of general representa-
tive values for arbitrarily polygonal fuzzy sets, and Section III
reviews the fuzzy interpolation method proposed in [1]. Sec-
tion IV extends the method to handle the interpolation and ex-
trapolation involving multiple rules, with each rule consisting of
multiple antecedents. Section V gives two examples to illustrate
the utility of this method, showing its potential in both model
simplification and in performing interpolation and extrapolation
inferences. Finally, Section VI concludes the paper.

II. GENERAL REPRESENTATIVE VALUE

To facilitate the description of the proposed work, the concept
of representative value (Rep) of a polygonal fuzzy set must be
defined first. This value should capture important information
such as the overall location of a fuzzy set, and will be used as
the guide to perform scale and move transformations of given
fuzzy sets. Consider an arbitrary polygonal fuzzy set with odd
points, , as shown in Fig. 1. It has
supports (horizontal intervals between every pair of odd points
which have the same membership value) and
slopes (nonhorizontal intervals between every pair of consecu-
tive odd points). Note that two top points (of full membership
value) do not have to be different. Although this figure explicitly
assumes that evenly paired odd points are given at each -cut
level, this does not affect the generality of the fuzzy set represen-
tation as artificial odd points can be created to construct evenly

paired odd points. Given such an arbitrary polygonal fuzzy set,
its general Rep is defined by

(1)

where is the weight assigned to point .
Specifying the weights is necessary for a given application.

The simplest case, which is called the average Rep hereafter, is
that all points take the same weight value, i.e., .

An alternative definition named the weighted average Rep as-
sumes that the weights increase upwards from the bottom sup-
port to the top support, to reflect the relative significance of the
fuzzy membership values. For instance, assuming the weights
increase upwards from to 1, such a Rep is defined by

(2)

where is the membership value of .
One of the most widely used defuzzification methods—the

center of core can also be used to define the center of core Rep.
In this case, the Rep is solely determined by those points with a
fuzzy membership value of 1

(3)

Note that the general Rep definition can be simplified if the
lengths of the supports (with the
indices arranged in ascending order from the bottom to the top)
are known. Indeed, as

, the general form of (1) can be re-written as

(4)

where is a constant.
Finally, it is worth indicating that the underlying scheme used
to capture the representative value of a fuzzy set is the same as
with the work of [12], that is, using a vector of characteristic
points to represent a fuzzy set.
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III. OVERVIEW OF INTERPOLATION

The method of [1] works by first constructing a new infer-
ence rule via manipulating two given adjacent rules, and then
by using scale and move transformations to convert the inter-
mediate inference results into the final derived conclusions. To
be self-contained, a brief overview of this method is provided
here. Note that all fuzzy sets involved are convex and normal
polygonal fuzzy sets throughout this paper.

A. Construct the Intermediate Rule

To be concise, the simplest case is herein used to illustrate
the underlying techniques for fuzzy interpolation. Given two
adjacent rules (informally, where a rule does not exist whose
antecedent value is between the antecedent values of these two
rules) as follows:

where
, together with an observation which

is located between fuzzy sets and (i.e.,
if , or
if , this constraint

will be disregarded in the extension, see Section IV), an inter-
polation is performed to achieve the fuzzy result .

The transformation-based interpolation begins with con-
structing a new fuzzy set which has the same Rep as that of

. To support this, the distance between and is defined
by

(5)

where the actual scheme adopted to compute Reps is fixed for
both and , of course. A ratio is
introduced to represent the important impact of upon the
construction of with respect to

(6)

That is to say, if plays no part in constructing
, while if plays a full role in determining
. Then,by using the simplest linear interpolation, the

, of are calculated as follows:

(7)

Note that the resulting has the same representative value as
and that is convex and normal. Similarly, the consequent

fuzzy set can be obtained by and . In doing so,
a new rule is derived, which involves the use of only
normal and convex fuzzy sets.

As is derived from and ,
when is given it is feasible to perform fuzzy reasoning with
this new rule without further reference to its originals. Consider

two extreme cases first. If , then from (6) ,
and according to (7), , and similarly , so the
conclusion . Likewise, if , then .
Other than the extreme cases, similarity measures are used to
support the interpolation that follows the intuition:

(8)

Suppose that a certain degree of similarity between and
is established, it is intuitive to require that the consequent parts

and attain the same similarity degree. The question is
now how to obtain an operator which can capture the similarity
degree between and , and to allow transforming to
with the desired degree of similarity. To this end, the following
two component transformations are proposed.

B. Scale Transformation

Consider applying scale transformation to an arbitrary
polygonal fuzzy membership function (as
shown on the left of Fig. 1) to generate
such that and will have the same Rep, and

, where are scale rates and
. In order to achieve this, equa-

tions ,
are imposed to obtain the supports with desired lengths, and

equations
are

imposed to equalize the ratios between the left
slopes’ lengths and the right slopes’ lengths of

to the ratio counterparts of the original fuzzy set . The
equation which ensures the Reps to
remain the same before and after the transformation is added to
make up of equations. For
clarity, these equations are collectively written as

(9)

where is the th support length of the resultant fuzzy set and
is the ratio between the th left slope length and the th right

slope length. Solving these equations simultaneously results
in a unique and convex fuzzy set . It can be shown [1] that
given a fuzzy set and the support scale rates , the use of a
different Rep will not affect the geometrical shape of the resul-
tant fuzzy set. Instead, it only affects the position of the trans-
formed fuzzy set.

However, arbitrarily choosing the th support scale rate when
the th scale rate is fixed may lead the th support to be-
coming wider than the th support, i.e., . To
avoid this, the th scale ratio , which represents the actual in-
crease of the ratios between the th supports and the th
supports, before and after the transformation, normalized over
the maximal of such an increase (in the sense that it does not
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lead to nonconvexity), is introduced to restrict with respect to

if

if

(10)

If (when ) or (when
), then . In summary, if given

such that or
(depending on whether or not),

, the scale transformation guarantees to produce a normal and
convex fuzzy set.

Conversely, if two convex sets and
which have the same Rep are given, the scale

rate of the bottom support, , and the scale ratio of the th
support, can be calculated by
(11) and (12), shown at the bottom of the page. Since and
are both convex, must be within the range as given in (12).

C. Move Transformation

Now, consider the move transformation (on the right of Fig.
1) applied to an arbitrary polygonal fuzzy membership function

to generate , such that
and have the same Rep and the same lengths of supports,

and . In order to achieve
this, the move transformation is decomposed into
submoves. The th submove moves the
th support (indexed from bottom to top beginning with 0) to a de-

sired place. This operator moves all the odd points on and above
the th support, whilst unaltering those points under this support.
To measure the degree of the th submove, the first possible max-
imal move distance (in the sense that the corresponding submove
does not lead to the part of the fuzzy set above the th support
becoming nonconvexity) should be worked out first. To simplify
the description of the submove procedure, only the move on the
right side (from ’s point of view) is considered in the discussion
hereafter. The left direction simply mirrors this operation.

If the th point is supposed to move to the right direction, the
maximal position can be calculated as follows when:

(13)

Fig. 2. Extreme move positions in the ith submove.

where

and is the length of the th support (either before
or after move transformation as they are the same). If, however,

, the maximal position
is calculated similarly to (13) except that the condition

on term is changed to . It
can be shown that the other extreme moving points

which are on the left side of the fuzzy
set in the th submove can be computed by

if

if

(14)

Also, it can be seen that all the extreme points determine a
normal and convex fuzzy set (as illustrated in Fig. 2) which
must have at least a vertical slope between any two consecutive

-cuts above the th support. This fuzzy set will have the same
Rep as with respect to the move transformation. That is

(15)

From (13), the first maximal move distance can be calculated.
However, the th submove should not only consider noncon-
vexity above the th support, but also ensure the avoidance of
nonconvexity below. Otherwise it may still lead to nonconvexity
as illustrated in Fig. 2. For this, the second maximal move dis-
tance is calculated as . It is intuitive to select

(11)

if

if

(12)
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the minimal of these two maximal move distances to act as the
actual maximal move distance, in order to avoid nonconvexity.
The move ratio , which is used to measure the degree of such
a submove is, thus, calculated by (16), shown at the bottom of
the page, where the notation represents ’s new position
after the th submove. Initially, .

If when , or
when , the submove is carried out as fol-
lows. The odd points under the th support are not changed:

while the other

points are to be moved. At the begin-
ning, when , all odd points are moved of course. If moving
to the right side from the viewpoint of , i.e., ,
the moving distances of
which are on the left side of the fuzzy set are calculated
by multiplying with the distances between the extreme po-
sitions and themselves. In doing so, will move the
same proportion of distance to their respective extreme posi-
tions. That is

(17)

where

(18)

This represents the applied move ratio for the th submove. If
. The adoption of applied move

ratio avoids the potential nonconvexity below. Such a move
strategy leads to a fuzzy set which
is convex, has the same Rep as , and its th point is located
at the new, desired position , i.e.,

, and .
In summary, if given move ratios

, the submoves
transform a given normal and convex set
to a new normal and convex set with the
same lengths of supports and the same Rep.

In the converse case, where two convex fuzzy sets
and of the

same representative value are given, the move ratio as
, are computed by

if

if

(19)

where is the ’s new position after the th submove.
Initially, when . This (bottom) submove will
not lead to any nonconvexity below as there are no odd points
underneath, whilst the other submoves need to consider situa-
tions where nonconvexity may arise both above and underneath.
When and are not de-
fined. In order to keep the expression the same for (19), both of
them take an infinite value. That is, the denominators in (19) are
simplified to and .

Since and are both
convex, it is obvious that when and

when .

D. Algorithm Outline

In summary, scale and move transformations transfer a fuzzy
set to another which has the same representative value as

. Scale transformation scales up or down to retaining the
ratio between left and right slope, but having a different support
length. The closer the scale ratio to 0, the more similar and

. Move transformation shifts to which has the same
support length as , but has a different location for support.
The closer the move ratio to 0, the more similar and .
Both scale and move transformations guarantee the representa-
tive value unchanged, and they both guarantee that the trans-
ferred fuzzy sets have the same type of shape as the original
one. For example, the transformation of a hexagonal fuzzy set
will lead to another hexagonal fuzzy set.

As indicated earlier, it is intuitive to maintain the similarity
degree between the consequent parts and

to be the same as that between the an-
tecedent parts and ,
in performing interpolative reasoning. As scale and move trans-
formations allow the similarity degree between two fuzzy sets to
be measured by the scale rate, scale ratios, and move ratios, the
desired conclusion can be computed from and scale rate,
scale ratios, and move ratios calculated from to (as illus-
trated in Fig. 3 for an interpolation involving triangular fuzzy
sets). The computation procedure is summarized as follows.

1) Calculate scale rates of
the th support from to by

.
2) Calculate scale rate of the bottom support (or just get

from the first step) and scale ratios (
of the th support from to by (11) and (12).

3) Apply scale transformation to with scale rates as cal-
culated in the first step to obtain .

4) Assign scale rate of the bottom support of to the
value of (i.e., ), with the scale ratios

of the th support of calculated as

if

if
(16)
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Fig. 3. Interpolative method.

per (12) under the condition that they equal to
as calculated in step 2) [see (20), shown

at the bottom of the page].
5) Apply scale transformation to using

as calculated in step 4) to ob-
tain .

6) Decompose the move transformation to sub-
moves. For

a) Calculate the th submove ratio from to
by (19), where is the fuzzy set obtained after
the th submove with initialization .

b) Apply move transformation to using to ob-
tain .

c) Apply move transformation to using to ob-
tain .

7) Return and , which is the
required resultant fuzzy set , when the for loop of step 6)
terminates.

Note that, with respect to (the largest number of odd points
for any fuzzy sets involved), the computational complexity of
this transformation-based interpolation is , mainly owing
to step 6) in Section III-D. This is acceptable given that is not
significantly large in most cases.

To explain the computation involved, an example is given as
follows.

Example 1: Two rules and the obser-
vations are given in order to determine the result . This
example concerns a trapezoidal interpolation. All the attributes
and results with observation are shown in Table I

TABLE I
EXAMPLE 1

Fig. 4. Example 1: Normal interpolation.

and Fig. 4. Consider the use of center of core Rep in this ex-
ample, and
are calculated by interpolation of , and , respec-
tively, with . This is calculated using (6). Then, the in-
terpolation via scale and move transformations is carried out ac-
cording to the steps of the algorithm. 1) Calculating the bottom
support scale rate (0.82) and top support scale rate (3.0) from
to . 2) Calculating the top support scale ratio (0.69) from
to . 3) Scaling to generate using
the bottom and top scale rates calculated in step 1). Note that
is a convex fuzzy set which has the same Rep and has the same
bottom and top support lengths as . 4) Computing the bottom
and top support scale rates (0.82 and 2.30) over according to
(20). 5) Scaling to generate using
the bottom and top scale rates calculated in step 4). 6) Calculating
the move ratio from to . Its value is 1.0 as has vertical
left slope. This move ratio is used to move to obtain the
resultant fuzzy set . In this example,
the interpolation method resulted in a fuzzy set which still has
a vertical left slope.

The above review is given for the simplified cases where both
rules involved in the interpolation have one antecedent attribute.
This is purely for easy illustration purposes. The work has been
developed to cover more general situations where the adjacent
rules involve more than one antecedent attribute, as detailed
in [1].

(20)
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IV. EXTENSIONS

All fuzzy interpolation techniques in the literature assume
that two closest adjacent rules to the observation are available.
Also, most interpolation methods presume that such rules must
flank the observation for each attribute (but not necessarily in
the same order). In practice, however, there may be a different
number of the closest rules to a given observation, and the at-
tribute values of these rules may lie just on one side of the obser-
vation. In addition, some interpolation methods cannot handle
cases where fuzzy sets with vertical slopes are involved. These
limitations inevitably restrict the potential application of the ex-
isting techniques. Although fuzzy interpolation has been applied
to control problems [20]–[23], little has been done for tasks such
as prediction and classification. To resolve this, the work of [1]
is first extended herein to allow interpolations that involve mul-
tiple multiantecedent rules, without making the strong assump-
tion that antecedent attributes flank the observation. Further-
more, it is shown that exploiting the generality of this extension,
extrapolation can be performed over multiple multiantecedent
rules in a straightforward manner. This further extension to ex-
trapolation makes the work of [1] much more useful as demon-
strated in Section IV-B and the follow-up sections.

A. Interpolation With Multiple Multiantecedent Rules

To allow fuzzy interpolation with more than two rules given a
rule base, the first step is to choose closest rules from
the rule base. The choice of a larger will help approaching
global consideration of neighboring rules in performing fuzzy
interpolation, thereby resulting in smoother decision surfaces.
On the contrary, the choice of a relatively smaller will tend
to consider only neighboring rules, whilst taking less compu-
tation time. The value of may be predetermined by trading
off between the smoothness of decision surfaces and quick re-
sponse of decision making. This requires a consistent use for a
given application domain, in order to ease interpretation of the
interpolated results. In the experiments carried out in this paper,
for simplicity of illustration, only two or three closest rules are
chosen to perform fuzzy interpolations. Then, selected rules are
used to construct the intermediate fuzzy rule. Once the interme-
diate rule is worked out, the rest of the process remains the same
as described in Section III. The following shows these two im-
portant steps.

1) Choose the Closest Rules: Without losing generality,
suppose that a rule and an observation are represented by

(21)

(22)

According to the distance definition (5) between two fuzzy
terms, the distances , between the pairs of

and can be calculated as

(23)

As attributes may have different domains, the absolute distances
may not be compatible with each other. To make these compa-

rable, each distance measure is normalized into the range of 0
to 1

(24)

where and are the maximal and minimal values of
attribute given. The distance between a rule and an observa-
tion can be calculated as the average of all attributes’ distances.
The Euclidean version of the distance, which is to be used in the
later implementation, is, therefore

(25)

If, however, the importance of attributes are not equal, weights
may be used. Note that if a conditional part of a rule is missing,
the distance of this attribute is treated as 0 to reflect that any data
value is very close to the null attribute value. This allows for
measuring the distances between a given observation and rules
which may not have fuzzy sets associated with certain attributes.

Once the distance definition of (25) is given, the distances
between a given observation and all rules in the rule base can
be calculated. The rules which have minimal distances are
chosen as the closest rules from the observation. It is worth
noting that the closest rules do not necessarily flank the ob-
servation. In the extreme case, all the chosen rules may lie on
one side, resulting in extrapolation rather than interpolation (see
Section IV-B).

2) Construct the Intermediate Rule: The main issue that re-
mains is how to construct the intermediate rule after
closest rules have been chosen. Let

, denote the weight to which the th term of the th
fuzzy rule contributes to constructing the th intermediate fuzzy
term . Intuitively, the larger the distance from to is,
the less value should take. In particular, the inversion of the
distance can be used to act as the weight

(26)

where is defined as per (23). Of course, if desired, al-
ternative nonincreasing functions such as
may be adopted to assign different weights.

For each attribute , the weights , are used
to compute the intermediate fuzzy term . Prior to that, they
are normalized as follows:

(27)

so that their sum over attribute equals to 1. Therefore, the
intermediate fuzzy term , are computed as

(28)

which correctly degenerates to (7) when only two rules
are considered for interpolation. That is, the two-rule in-

terpolation case is a special case of the generalized multirule
interpolation.

In the two-rule interpolation case, the calculated via (28)
has the same Rep as the input . However, this is generally
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Fig. 5. Example 2: Interpolation with multiple rules.

not true when more than two rules are involved (that is why the
symbol , rather than , is used here). Thus, it does not sat-
isfy the requirement, of having the same Rep value before and
after transformation, as imposed by the scale and move transfor-
mation-based interpolation. In order to solve this problem, the
process of shift is suggested to modify so that it becomes
a new intermediate fuzzy term which has the same Rep as

. In particular, the shift of , is performed
as follows:

(29)

where is a constant defined by

(30)

In doing so, the following holds:

(31)

Regarding the consequent, by analogy to (28), the intermediate
fuzzy output can be computed by

(32)

where is the mean of

(33)

is then shifted to as follows:

(34)

where and are maximal and minimal values of output
attribute, and is the mean of the shift parameters

(35)

From this, the intermediate fuzzy rule

can be constructed via (29) and (34). The rest of the interpolation
reasoning is, hence, applied to this intermediate rule and the
observation, in the same way as presented in Section III. An
example follows to explain how this works.

Example 2: Three rules and
the observation, i.e., the observed values and for the two
conditional attributes are given in Table II. For the first attribute

, the distances between and the observed
are calculated as 4, 4, and 8 respectively (assuming the center of
core Rep is adopted). According to (26), the weights are calcu-
lated as 0.25, 0.25, and 0.13 respectively. They are normalized
using (27), resulting in the new weights of 0.4, 0.4, and 0.2. Ac-
cording to (28), a fuzzy term is obtained using
these normalized weights. As does not have the same Rep
as the input , it is shifted so that it has the same Rep as .
According to (30), is computed. The fuzzy term

and are then used to generate the required intermediate
fuzzy set . Similarly, is con-
structed with the normalized weights of and (0.33,
0.44, and 0.22, respectively). is then computed
based on and . For the consequent, fuzzy set

is computed using the average weights of at-
tributes and (0.37, 0.42, 0.21) according to (32). The inter-
mediate output is then calculated using the
average of and , that is , with respect to (34). The
overall computational process is summarized in Fig. 5.
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Fig. 6. Example 3: Extrapolation as a specific case of interpolation.

TABLE II
EXAMPLE 2

B. Extrapolation

The extension of the above to perform extrapolation is readily
attainable. It is a special case of interpolation as indicated in
Section IV-A. In particular, when all of the closest rules
chosen (see Section IV-A1) lie on one side of the given obser-
vation, the interpolation problem becomes extrapolation. Both
choosing the closest rules and constructing the intermediate
rule are carried out in the exactly same way as those procedures
for interpolation as described in Section IV-A.

An example follows to explain the computation. Suppose that
only the second and third rules in Example 2 are considered, the
interpolation becomes an extrapolation of two rules.

Example 3: Two rules and the ob-
servation as given in Table II are used to carry out fuzzy
extrapolation in this example. Again, assume the center of core
Rep is used. For the first attribute , the normalized weights
of are computed to be 0.67 and 0.33. According
to (28), a fuzzy term is obtained. Since
does not have the same Rep as , it has to be shifted. According
to (30), is obtained. Fuzzy term and are used
to generate the required intermediate fuzzy set .
Similarly, and have normalized weights 0.67 and 0.33 in
constructing the intermediate fuzzy set . With

is shifted to . The fuzzy set
can then be computed using the average weights

of and (0.67, 0.33) according to (32). The intermediate
output is then computed using the average of

and , that is , with respect to (34). This is shown in
Fig. 6.

Note that the rules which are used for extrapolation may be
twisted. That is, their associated fuzzy sets may not have the
same order (as in Example 3) for each attribute. The following
illustrates this case.

Example 4: Two new rules and
, and the observation of Table II

are given for fuzzy extrapolation. For the first attribute
is obtained with the normalized weights

of , being 0.67 and 0.33. Fuzzy term is
shifted (with ) to . Similarly,

and have normalized weights 0.33 and 0.67 in con-
structing . With is shifted to

. Fuzzy set is then computed
using the average weights 0.5 and 0.5. The intermediate output

can, thus, be computed using the average of
and , that is , with respect to (34). This is shown

in Fig. 7.

V. EXPERIMENTAL RESULTS

Fuzzy interpolation methods not only help reduce rule bases
by removing fuzzy rules which can be approximated by their
neighboring rules, but also support reasoning in sparse fuzzy
rule bases. In this section, the truck backer-upper control
problem shows how the extension of work [1] (denoted as HS
hereafter) helps simplify a fuzzy rule base. Further, the problem
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Fig. 7. Example 4: Extrapolation with twisted rules.

Fig. 8. Truck backer-upper system.

of computer activity prediction shows how the extension serves
as a fuzzy inference mechanism for a sparse rule base. In
addition, results are compared to those obtained by the most
widely used fuzzy inference method, Mamdani inference, and
by other interpolation-based inferences, including the general
[9], QMY [7], and linear HS method [24].

A. Truck Backer-Upper Control

To demonstrate the usage of the extended interpolation
method, the truck backer-upper problem [25]–[28] is consid-
ered in this section. This problem is a well-known benchmark
in nonlinear control and, thus, has attracted much interest in the
literature. It can be illustrated in Fig. 8: The small cab is the
truck whose behavior can be determined by three state variables

and , where and
are the coordinate values for horizontal and vertical axes

respectively, and is the azimuth angle between the horizontal
axis and the truck’s onward direction. The truck begins from
a certain initial position and should reverse to the

desired end point (50, 200) with desired azimuth angle 90. To
control the truck, the steering angle should be
provided after every small move made by the truck. The control
problem can, thus, be formulated as . Typically,
it is assumed that enough clearance between the truck and the
loading dock exists so that the truck y-position can be ignored,
simplifying the controller function to .

This example involves the case of FISMAT [29], which has
nine fuzzy rules as shown in Fig. 9, with each row interpreted
as a fuzzy rule

where and are the linguistic labels of the system vari-
ables. Controlled by these nine fuzzy rules, the truck backing
trajectories for four initial points are shown in Fig. 10. All four
trajectories roughly converge to the destination point (50, 200).
The reaching positions of these four trajectories are given in the
second row of Table III.



HUANG AND SHEN: FUZZY INTERPOLATION AND EXTRAPOLATION: A PRACTICAL APPROACH 23

Fig. 9. Membership functions for nine rules.

Fig. 10. Trajectories from the use of nine fuzzy rules.



24 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2008

TABLE III
REACHING POSITIONS

Fig. 11. Trajectories from the use of six fuzzy rules.

For this illustrative example, such an expert fuzzy controller
may not suffer from the curse of dimensionality, thanks to the
current computational potential. Yet, in general, the number of
rules increases exponentially as the input variables and the fuzzy
linguistic labels associated with each variable increase. This is
because each domain partition has to be covered by at least one
fuzzy rule, without the use of interpolation, in order to ensure
completeness of the inference.

It is, however, interesting to notice that, for the given rule
base, domain partitions appear to be symmetrical in some sense.
For example, rule 4 and rule 6 are symmetrical if they are mir-
rored by rule 5: both rules 4 and 6 have the same , and they are
symmetrical for attribute and from rule 5’s point of view.
This indicates that rule 5 can be interpolated by rules 4 and 6,
and, therefore, it may be removed from this fuzzy controller.
Similarly, rules 2 and 8 may be removed as they can be interpo-
lated by rules 1 and 3, and rules 7 and 9, respectively. In doing
so, a much more compact fuzzy controller which consists of
only six fuzzy rules is obtained. The trajectories and reaching
positions of the truck controlled by the remaining six fuzzy
rules, without interpolation, are respectively shown in Fig. 11
and the third row of Table III. It can be seen that the reaching
positions still roughly converge to the destination point.

However, as the rule base becomes more sparse (due to the
removal of rules 2, 5, and 8), it is possible that no fuzzy rules

may fire for a given observation (truck state here), although this
does not happen in this particular experiment. Yet, if the firing
strength threshold is set to be 0.7 (that is, any rule fires only if
the firing strength is greater than 0.7), then no rule fires given the
observation whose is around 50 and is around 90. This leads
to the sudden breaks of the trajectories as shown in Fig. 12.

Fuzzy interpolation technique can be employed to support the
application for this problem. A possible solution is to predeter-
mine a threshold to decide which inference mechanism (Mam-
dani or fuzzy interpolation based) should be applied. That is,
for a given observation under certain firing strength, the rule
base should be treated as sparse. Therefore, the interpolation-
based inference becomes a natural choice where otherwise no
rules may fire. In this experiment, the threshold is set to be
0.72 after several trials. With the interpolation using two closest
rules, Fig. 13 and the fourth row of Table III show the results
of performing inferences by following this approach (with the
threshold set to 0.72). It is interesting to note that all four trajec-
tories better converge to the destination, although with a slightly
more azimuth error.

This experiment clearly demonstrates that the interpolation
method can help to simplify a given rule base and to support
inferences in a sparse rule base. First, it removes the fuzzy rules
which can be approximated (interpolated) by their neighboring
rules, resulting in a more compact rule model. This alleviates
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Fig. 12. Sudden breaks of trajectories for six fuzzy rules with rule-firing threshold being 0.7.

Fig. 13. Trajectories from interpolation with six fuzzy rules.

the curse of dimensionality by keeping important rules only,
rather than using all possible rules. Second, as an alternative
for performing traditional fuzzy inferences (such as Mamdani
and Sugeno), it helps generate the results even when no fuzzy
rules may fire with certain firing strengths for the traditional
approaches.

B. Computer Activity Prediction

The computer activity database [30] contains a collection of a
computer system activity measures. It includes 8192 cases, with
each involving 22 continuous attributes. The task is to predict
the numeric value of attribute usr based on all other attributes.
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Fig. 14. Relative squared error of fuzzy ID3s.

In this experiment, the database is divided into a training and
a test dataset. The training dataset covers approximately
of the whole database (5462 cases, to be precise) and the test
dataset containing the rest. As there exists redundant or less rel-
evant information in the initial 22 attributes, feature selection is
carried out to select the most informative ones. For simplicity,
the correlation-based feature subset selection [31], [32] is used
and it selects 11 (read, small, sread, swrite, exec, rchar, pflt, vflt,
runqsz, freeswap, and usr) attributes.

The well-known fuzzy ID3 training scheme [33] is adopted
to form fuzzy rule bases on which different fuzzy inference
methods including Mamdani and interpolation-based ones, can
be applied and then compared with each other. For simplicity,
the triangular fuzzy sets are used and they are assumed to be
evenly distributed over each attribute domain. Fuzzy ID3 with
different configurations (in terms of the number of fuzzy sets
and the number of minimal leaf objects) are carried out and the
relative squared errors (relative to the simple average predictor)
are shown in Fig. 14. This reveals a general trend in that the
more fuzzy sets used in the training, the better performance the
resulting rules have. However, the number of rules may become
very large at the same time. For instance, with the number of
minimal leaf objects being 1, the resulting rule base size quickly
increases from 55 to 477 if the number of fuzzy sets increases
from 3 to 7. For comprehensibility a fuzzy decision tree which
has 47 rules and an error rate of 13.29% is chosen (where the
number of fuzzy sets is six per attribute and the number of min-
imal leaf objects is 480) to be used in comparing different fuzzy
inference methods. Note that in this rule base, four among the
2730 test data are not fired by any of the 47 rules using Mam-

dani inference. That is, the obtained rule base is not complete,
involving sparse regions.

The errors shown in Fig. 14 are those produced by using
Mamdani fuzzy inference. Now, the interpolation-based infer-
ence techniques are compared against it using the same rule base
and same test data. Note that the methods used here, including
general [9], [10], QMY [7], linear HS [24], and HS methods all
make use of intermediate rules in performing interpolation. In
particular, the solid cutting method [10] and the revision prin-
ciple-based technique [9] are deployed amongst the family of
general interpolations. Other methods such as KH [2], [34], and
modified KH [12], [35], which perform without making use of
intermediate rules, are not considered here.

In this experiment, the test dataset may be preprocessed be-
fore use. In particular, the data are fuzzified to isosceles trian-
gular fuzzy sets, by assigning appropriate support lengths with
the center of a fuzzified observation to be the same as its original
crisp value. For example, with respect to an attribute, fuzzi-
fication assigns of the support length of the fuzzy terms
that are used in the rule base to that of the test data object.
This fuzzification is purely implementational. The reason for
applying fuzzification is that the test data may not be precise
in practice due to various factors in data collection. Of course,
fuzzification 0 is allowed in which no fuzzification is performed.

It is possible that some attribute values of the intermediate
rule exceed the domain limit of that attribute. This is because
during the construction of the intermediate rule, extrapolation
may be involved and it may lead to the intermediate fuzzy terms
being out of range. Also, it is possible that the fuzzified test data
exceed the domain limit. If either of these two cases occurs, gen-
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TABLE IV
RELATIVE SQUARED ERRORS

eral interpolation ignores this attribute in performing interpola-
tion as it simply cannot handle these two cases. For QMY and
the linear HS methods, they suffer from another problem as they
cannot handle the case where the intermediate rule has a vertical
slope (on either the left or right side) for a certain attribute. Such
an attribute is ignored if it occurs. Fortunately, all these issues
are not a problem for the HS method. Thus, no attributes would
be dropped in performing HS interpolations or extrapolations.

The results of using different methods with respect to various
fuzzifications of the test data are shown in Table IV. The words
within parenthesis indicate which type of Rep is employed for
linear HS or HS methods. Note that all the errors shown are
the average of the errors in interpolating two and three closest
rules. These results clearly show that all interpolation-based in-
ferences (except some cases of the general interpolation) outper-
form Mamdani inference. The reason of the poor performance
for the general is that it drops too many attributes during the
interpolation process (if either intermediate fuzzy terms or the
fuzzified test data exceed the domain limit), leading to substan-
tial information loss. On the contrary, as the HS method does not
need to drop any attributes, it generally results in a stable and
high performance. QMY and the linear HS method are between
those two extremes. Nevertheless, they still generate better per-
formance than that produced by Mamdani. It is worth noting
that the attribute dropping is not part of the general interpolation
method, it is simply made so to facilitate comparisons. There
may exist other approaches, on which the general interpolation
can hopefully perform better.

The best performance is 6.22% when the HS or linear HS
interpolation is used and no fuzzification is made for the test
data. This error is even less than half of the original error rate of
13.29%, which was produced by Mamdani inference. In addi-
tion to the high performance, the interpolation-based inferences
are capable of firing all test data including those that are not
fired by Mamdani. It is worth noting that the fuzzification of the
test data with different support lengths does not significantly af-
fect the prediction error of the HS method. If the average Rep
is used for linear HS and HS, the results are exactly the same
across different fuzzifications. This is because the value of the
average Rep over a fuzzy set is exactly the same as the fuzzi-
fied crisp value created from the defuzzification method used
(namely, center of gravity) over the same fuzzy set. These re-
sults clearly demonstrate the robustness of the HS method.

VI. CONCLUSION

Fuzzy interpolation does not only help reduce the complexity
of fuzzy models, but also makes inference in sparse rule-based

systems possible. Although fuzzy interpolation techniques have
been applied to control problems, they have not yet been re-
ported in prediction or classification applications in machine
learning sense as 1) almost all fuzzy interpolation techniques
in literature unrealistically assume that there are two closest ad-
jacent rules available to the observation; 2) such rules must flank
the observation for each attribute; and 3) some interpolation
methods cannot handle the case when fuzzy sets with vertical
slopes are involved.

To make fuzzy interpolation ready to be used in practice, this
paper has further extended the work of [1] to deal with inter-
polations that involve multiple multiantecedent rules, without
making the strong assumption that antecedent attributes flank
the observation. Furthermore, exploiting the generality of this
newly developed method, extrapolation can be performed over
multiple multiantecedent rules in a straightforward manner.
This extension helps bridge the gap between theory and
application.

Two realistic applications, namely truck backer-upper con-
trol and computer activity prediction, are given in this paper to
illustrate the potential of fuzzy interpolation (and indeed extrap-
olation as well) in both rule base simplification and inference
with sparse rule bases. Comparative studies to Mamdani infer-
ence and other existing fuzzy interpolation methods have been
provided to show the success of the proposed method.

Further development on the proposed method may be desir-
able in maximal accordance with Jenei’s axioms [18]. Also,
work remains to investigate the possible implications of using
optimized partition of a problem domain. However, this should
not affect the theoretical approach put forward both here and in
the original paper [1] which the present work is based on, since
the techniques developed do not rely on this implementational
issue. In the experimental studies presented in this paper, only
evenly partitioned datasets are used and these partitions are not
optimized in any sense. It is, therefore, expected that with the
use of an optimized fuzzification mechanism, the performance
of the proposed work may be further improved. It is also very
interesting to apply the work to more complex domains, perhaps
in conjunction with the utilization of more powerful feature se-
lection tools (e.g., [36]) than those used in this paper, in an effort
to fully realize the aims of developing this practical approach.
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